
Ultra-low latency audio and
sensor processing
on the BeagleBone Black

A project by
The Augmented Instruments Lab
at C4DM, Queen Mary University of London

http://bela.io

http://bela.io

How it started

The Goal:

High-performance, self-contained
audio and sensor processing

Already available platforms:

• Easy low-level
hardware connectivity

• No OS = precise
control of timing

• Very limited CPU  
(8-bit, 16MHz)

• Not good for audio
processing

• Reasonable CPU 
(up to 1GHz ARM)

• High-level hardware
(USB, network etc.)

• Limited low-level
hardware

• Linux OS = high-
latency / underruns

• Fast CPU
• High-level hardware

(USB, network etc.)
• Arduino for low-level
• USB connection =

high-latency, jitter
• Bulky, not self-

contained

Hardware

BeagleBone Black
1GHz ARM Cortex-A8

NEON vector floating point
PRU real-time microcontrollers

512MB RAM

Custom Bela Cape
Stereo audio in + out

Stereo 1.1W speaker amps
8x 16-bit analog in + out

16x digital in/out

Features

• 1ms round-trip audio latency without underruns
• High sensor bandwidth: digital I/Os sampled at

44.1kHz; analog I/Os sampled at 22.05kHz
• Jitter-free alignment between audio and sensors
• Hard real-time audio+sensor performance, but full

Linux APIs still available
• Programmable using C/C++, Pd and Faust
• Designed for musical instruments and live audio

How it works

Audio
Code

Other
Processes

Linux Kernel

Input/Output

Audio

USB

Network

Storage

Highest
Priority

• Speakers with on-
board amps

• Audio In
• Audio Out
• 16x digital I/O
• 8x 16-bit analogue

in (22.05kHz)
• 8x 16-bit analogue

out (22.05kHz)

Find an interactive pin out diagram at http://bela.io/belaDiagram

http://bela.io/belaDiagram

Getting Started

bela.io/code/wiki

http://bela.io/code/wiki

Materials
1. BeagleBone Black (BBB)
2. Bela Cape
3. SD card with Bela image
4. 3.5mm headphone jack adapter cable
5. Mini-USB cable (to attach BBB to computer)
6. Also useful for hardware hacking: breadboard,

jumper wires, etc.

Step 1
Install BBB drivers

Get and install the BeagleBone Black drivers for your
operating system:

http://bela.io/code/wiki --> Getting Started

http://bela.io/code/wiki

Access the IDE:
http://192.168.7.2:3000

http://192.168.7.2:3000

Access the IDE:
http://192.168.7.2:3000

API introduction
• In render.cpp....
• Three main functions:
• setup()  

runs once at the beginning, before audio starts  
gives channel and sample rate info

• render()  
called repeatedly by Bela system ("callback")  
passes input and output buffers for audio and sensors

• cleanup()  
runs once at end 
release any resources you have used

• bela.io/code/embedded Code docs

http://bela.io/code/embedded

1. Web interface: http://192.168.7.2:3000  
Edit and compile code on the board

2. Building scripts:
1. Heavy Pd-to-C compiler (https://enzienaudio.com) 

Make audio patches in Pd-vanilla, translate to C and
compile on board

2. Libpd 
Compile Pd patches without Heavy - access to more
objects but not as fast, but good for prototyping

3. Faust 
Build online, export to C++, run on Bela

Step 2
How to build other projects

http://192.168.7.2:3000
https://enzienaudio.com

Bela and PureData

libpd on Bela

How to run PureData patches on Bela with libpd :

1. Go to http://bela.io/code/files and download the bela-
ableton-2016-04-12.zip archive

2. Unzip the archive into a convenient location and open a
terminal window

3. Navigate into the scripts/ folder and run  
./run_pd_libpd.sh ../projects/heavy/pd/
demo-track/

4. Type "yes" and you should hear something

http://bela.io/code/files

Bela and Faust

• Today: you will have to download the C++ file
generated by the http://faust.grame.fr/
onlinecompiler/ (after setting the -i flag), save it on
your computer and target it with the
build_project.sh script, as in:
 
/path/to/bela/repo/scripts/build_project.sh /path/
to/faust/file/CppCode.cpp

freq = hslider("[1]Frequency[BELA:ANALOG_0]",
440,460,1500,1):smooth(0.999);
pressure = hslider("[2]Pressure[style:knob][BELA:ANALOG_4]", 0.96, 0.2,
2.0, 0.01):smooth(0.999):min(0.99):max(0.2);
gate = hslider("[0]ON/OFF (ASR Envelope)[BELA:DIGITAL_0]",0,0,1,1);

http://faust.grame.fr/onlinecompiler/

Help me with Supercollider

• We got it to work, thank to Dan Stowell at C4DM
• We run 120sinewaves for 55% CPU time.
• Can you make something more useful with it?

http://bit.ly/1eKffsL

Interested to pre-order a kit?

65£ for a cape + SD card

Delivery: July

Stay tuned! Join the announcement list at
http://bela.io

Join the discussion list at
http://lists.bela.io/pipermail/discussion-bela.io/

http://bit.ly/1eKffsL
http://bela.io
http://lists.bela.io/pipermail/discussion-bela.io/

Connect a Potentiometer
a.k.a. a “pot” or knob

analogue in 0

GND (ground)5V

The pot has 3 pins
5V and GND on the outside
Bela analog in in the middle

analog in 0

GND (ground)5V

Connect a LDR/FSR*
* Light-Dependent Resistor / Force-Sensing Resistor

A0 goes to both
resistor and LDR

Connect an LED*
* Light-Emitting Diode

560Ω

resistor

analog out 0

(note pinout:

6 4 2 0 1 3 5 7)

GND (ground)

Long lead goes

to the resistor

Analog input
float gPhase;
float gInverseSampleRate; /* Pre-calculated for convenience */
int gAudioFramesPerAnalogFrame;

extern int gSensorInputFrequency; /* Which analog pin controls frequency */
extern int gSensorInputAmplitude; /* Which analog pin controls amplitude */

void render(BeagleRTContext *context, void *userData)
{
 float frequency = 440.0;
 float amplitude = 0.8;

 for(unsigned int n = 0; n < context->audioFrames; n++) {
 /* There are twice as many audio frames as matrix frames since

audio sample rate is twice as high */
 if(!(n % gAudioFramesPerAnalogFrame)) {
 /* Every other audio sample: update frequency and amplitude */
 frequency = map(analogReadFrame(context,

 n/gAudioFramesPerAnalogFrame,
 gSensorInputFrequency),

 0, 1, 100, 1000);
 amplitude = analogReadFrame(context,
 n/gAudioFramesPerAnalogFrame,
 gSensorInputAmplitude);
 }

 float out = amplitude * sinf(gPhase);

 for(unsigned int channel = 0; channel < context->audioChannels; channel++)
 context->audioOut[n * context->audioChannels + channel] = out;

 gPhase += 2.0 * M_PI * frequency * gInverseSampleRate;
 if(gPhase > 2.0 * M_PI)
 gPhase -= 2.0 * M_PI;
 }
}

This runs every
other sample

Read the analog
input at the

specified frame

Map the 0-1 input
range to a frequency

range

Digital I/O
void render(BeagleRTContext *context, void *userData)
{
 static int count = 0; // counts elapsed samples
 float interval = 0.5; // how often to toggle the LED (in seconds)
 static int status = GPIO_LOW;

 for(unsigned int n = 0; n < context->digitalFrames; n++) {
 /* Check if enough samples have elapsed that it's time to
 blink to the LED */
 if(count == context->digitalSampleRate * interval) {
 count = 0; // reset the counter
 if(status == GPIO_LOW) {
 /* Toggle the LED */
 digitalWriteFrame(context, n, P8_07, status);
 status = GPIO_HIGH;
 }
 else {
 /* Toggle the LED */
 digitalWriteFrame(context, n, P8_07, status);
 status = GPIO_LOW;
 }
 }

 /* Increment the count once per frame */
 count++;
 }
}

This runs once
per digital frame

Write the digital
output at the

specified frame

Bela and Heavy

• https://docs.google.com/presentation/d/
1DLCDUgZp0IiaQhnO55uhOJ5iymbNMmDqPC_J
yfTkAaE/

• Nice URL, uh?

https://docs.google.com/presentation/d/1DLCDUgZp0IiaQhnO55uhOJ5iymbNMmDqPC_JyfTkAaE/

Stay tuned! Join the announcement list at
http://bela.io

http://bela.io

Xenomai remarks
• scheduler can preempt non-preemptable kernel

operations
• audio-thread can be set at a higher priority than

the Kernel
• mode switches into kernel mode need to be

avoided in the audio thread:
‣ disk I/O
‣ socket
‣ printf
‣ pthread
‣ available.notify_one(); triggers a mode switch

