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ABSTRACT

In this paper we present SynPy, an open-source software
toolkit for quantifying syncopation. It is flexible yet easy
to use, providing the first comprehensive set of implemen-
tations for seven widely known syncopation models us-
ing a simple plugin architecture for extensibility. SynPy
is able to process multiple bars of music containing arbi-
trary rhythm patterns and can accept time-signature and
tempo changes within a piece. The toolkit can take input
from various sources including text annotations and stan-
dard MIDI files. Results can also be output to XML and
JSON file formats.

This toolkit will be valuable to the computational music
analysis community, meeting the needs of a broad range
of studies where a quantitative measure of syncopation is
required. It facilitates a new degree of comparison for ex-
isting syncopation models and also provides a convenient
platform for the development and testing of new models.

1. INTRODUCTION

Syncopation is a fundamental feature of rhythm in music
and a crucial aspect of musical character in many styles
and cultures. Having comprehensive models to capture
syncopation perception allows us to better understand the
broader aspects of music perception. Over the last thirty
years, several modelling approaches for syncopation have
been developed and widely used in studies in multiple dis-
ciplines [1–8]. To date, formal investigations on the links
between syncopation and music perception subjects such
as meter induction [9,10], emotion [8], groove [11,12] and
neurophysiological responses [13, 14], have largely relied
on quantitative measures of syncopation. However, until
now there has not been a comprehensive reference imple-
mentation of the different algorithms available to facilitate
quantifying syncopation.

In [15], Song provides a consolidated mathematical frame-
work and in-depth review of seven widely used syncopa-
tion models: Longuet-Higgins and Lee [1], Pressing [2,
16], Toussaint’s Metric Complexity [3], Sioros and Guedes
[4,17], Keith [5], Toussaint’s off-beatness measure [6] and
Gómez et al.’s Weighted Note-to-Beat Distance [7]. With
the exception of Sioros and Guedes’ model, code for which
was open-sourced as part of the Kinetic project [18], ref-

Copyright: c�2015 Chunyang Song et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

erence code for the models has not previously been pub-
lically available. Based on this mathematical framework,
the SynPy toolkit (available from the repository at [19])
provides implementations of these syncopation models in
the Python programming language.

The toolkit not only provides the first open-source im-
plementation of these models in a unified framework but
also allows convenient data input from standard MIDI files
and text-based rhythm annotations. Multiple bars of mu-
sic can be processed, reporting syncopation values bar by
bar as well as descriptive statistics across a whole piece.
Strengths of the toolkit also include easy output to XML
and JSON files plus the ability to accept arbitrary rhythm
patterns as well as time-signature and tempo changes. In
addition, the toolkit defines a common interface for synco-
pation models, providing a simple plugin architecture for
future extensibility.

In Section 2 we introduce mathematical representations
of a few key rhythmic concepts that form the basis of the
toolkit then briefly review seven syncopation models that
have been implemented. In Section 3 we outline the ar-
chitecture of SynPy, describing input sources, options and
usage.

2. BACKGROUND

In this section, to introduce the theory behind the toolkit,
we briefly present key aspects of its underlying mathemat-
ical framework (described in detail in [15]) and then give
a short overview of each of the implemented syncopation
models.

2.1 Time-span

The term time-span has been defined as the period between
two points in time, including all time points in between
[20]. To represent a given rhythm, we must specify the
time-span within which it occurs by defining a reference
time origin torg and end time tend, the total duration tspan of
which is tspan = tend � torg (Figure 1).

For the SynPy toolkit, we use ticks as as the basic time
unit as opposed to seconds (in keeping with the represen-
tation used for standard MIDI files) where the rate is given
in Ticks Per Quarter-note (TPQ). The TPQ rate that is cho-
sen is arbitrary so long as the start time and duration of all
notes in a rhythm pattern can be represented as integer tick
values. As Figure 2 demonstrates, the Son clave rhythm
pattern could be correctly represented both at 8 and 4 TPQ
but not at 2 TPQ because the pattern contains a note that
starts on the fourth 16th-note position of the bar.
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Figure 1. An example note sequence. Two note events y0
and y1 occur in the time-span between time origin torg and
end time tend. The time-span duration tspan is three quarter-
note periods. The rests at the start and end of the bar are
not explicitly represented as objects in their own right here
but as periods where no notes sound.

2.2 Note and velocity sequences

A single, note event y occurring in a time-span may be de-
scribed by the tuple (ts, td, ⌫) as shown in Figure 1, where
ts represents start or onset time relative to torg, td repre-
sents note duration in the same units and ⌫ represents the
note velocity (i.e. the dynamic; how loud or accented the
event is relative to others), where ⌫ > 0.

This allows us to represent an arbitrary rhythm as a note
sequence Y , ordered in time

Y = hy0, y1, · · · , y|Y |�1i (1)

If TPQ is set to 4, an example note sequence representing
the clave rhythm in Figure 2 could be:

Y = h(0, 3,2), (3, 1, 1), (6, 2,2), (10, 2, 1), (12, 4, 1)i,
(2)

the higher velocity values of the first and third note tuples
(in bold) showing that these are accented notes in this ex-
ample.

An alternative representation of a rhythm is the veloc-
ity sequence. This is a sequence of values representing
equally spaced points in a time-span; each value corre-
sponding to the normalised velocity of a note onset if one
is present or zero otherwise. The velocity sequence for the
note sequence in Equation 2 can therefore be represented
as

V = h1, 0, 0, 0.5, 0, 0, 1, 0, 0, 0, 0.5, 0, 0.5, 0, 0, 0i. (3)

It should be noted that the conversion between note se-
quence and velocity sequence is not commutative, because
the note duration information is lost in the conversion. As a
result, converting from velocity sequence to note sequence,
an assumption must be made that note durations equal to
the inter-onset-intervals. Converting the velocity sequence
in Equation 3 back to a note sequence would therefore
yield

Y 0 = h(0, 3, 2), (3,3, 1), (6, 4, 2), (10, 2, 1), (12,4, 1)i,
(4)

which has different durations (in bold) for the second and
fourth notes compared to the original sequence in Equa-
tion 2.
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Figure 2. Representation of the Son clave rhythm at dif-
ferent Ticks Per Quarter-note (TPQ) resolutions. In (a) and
(b) there is a tick for each note of the rhythm pattern thus
all the sounded notes are captured (highlighted by the blue
circles). However, in (c) where TPQ is 2, the second note
of the pattern cannot be represented; the minimum resolu-
tion in this case is 4 TPQ.

2.3 Metrical structure and time-signature

Isochronous-meter is formed with a multi-level hierarchi-
cal metrical structure [20,21]. The metrical hierarchy may
be described with a subdivision sequence h�0,�1, ...,�Lmaxi
such that in each metrical level L, the value �L speci-
fies how nodes in the level above (i.e. L � 1) should be
split to produce the current level (see Figure 3). Any time-
signature can be described by specifying a subdivision se-
quence and the metrical level that represents the beat.

Events at different metrical positions vary in perceptual
salience or metrical weight [22]. These weights may be
represented as a weight sequence W = hw0, w1, ...wLmaxi.
The prevailing hypothesis for the assignment of weights
in the metrical hierarchy is that a time point that exists in
both the current metrical level and the level above is said
to have a strong weight compared to time points that are
not also present in the level above [20]. The hierarchy of
weights and subdivisions forms a key component in the
prediction value calculation for many syncopation models.
The choice of values for the weights in W can vary be-
tween different models but the assignment of weights to
nodes at a given level in the hierarchy, as described in [20],
is common to all.

2.4 Syncopation models

In this section we briefly review each implemented synco-
pation model, discussing their general hypothesis and giv-
ing a flavour of their mechanism. It is not possible to go
into the full details of each implementation here but a thor-
ough review of the models is given in chapter 3 of [15]. To
help compare the capabilities of different models, we also
give an overview of the musical features each one captures
in Table 1.



Figure 3. Metrical hierarchies for bars two time-
signatures: (a) A simple-duple hierarchy dividing the bar
into two groups of two (as with a 4/4 time-signature);
(b) A compound-duple hierarchy dividing a bar into two
beats, each of which is subdivided by three (e.g. 6/8 time-
signature).

2.4.1 Longuet-Higgins and Lee 1984 (LHL)

Longuet-Higgins and Lee’s model [1] decomposes rhythm
patterns into a tree structure as described in Section 2.3 as-
signing metrical weights wL = �L i.e. W = h0,�1,�2, ...i.
The hypothesis of this model is that a syncopation occurs
when a rest (R) in one metrical position follows a note (N)
in a weaker position. Where such a note-rest pair occurs,
the difference in their metrical weights is taken as a local
syncopation score. Summing the local scores produces the
syncopation prediction for the whole rhythm sequence.

2.4.2 Pressing 1997 (PRS)

Pressing’s cognitive complexity model [2,16] specifies six
prototype velocity sequences and ranks them in terms of
cognitive cost. For example, the lowest cost is the null pro-
totype for rhythms that contain either a single rest or note;
a higher cost is given to the filled prototype that has a note
in every position of the sequence e.g. h1, 1, 1, 1i. The high-
est cost is given to the syncopated prototype that has a rest
in the first (i.e. strongest) metrical position e.g. h0, 1, 1, 1i.
The model analyses the cost for the whole rhythm-pattern
and for each of its sub-sequences at every metrical level
determined by the subdivision factor. The final output is
a sum of the costs per level weighted by the number of
sub-sequences in each.

2.4.3 Toussaint 2002 ‘Metric Complexity’ (TMC)

Toussaint’s metric complexity measure [3] defines the met-
rical weights as wL = Lmax � L + 1, thus stronger met-
rical positions are associated with higher weights and the
weakest position will be wLmax = 1. The hypothesis of the
model is that the level of syncopation is the difference be-
tween the metrical simplicity of the given rhythm (i.e. the

Property LHL PRS TMC SG KTH TOB WNBD
Onset X X X X X X X
Duration X X
Dynamics X
Mono X X X X X X X
Poly X X X
Duple X X X X X X X
Triple X X X X X X

Table 1. Musical properties captured by the different syn-
copation models. All models use note onsets, but only two
use note duration rather than inter-onset intervals. Only
SG takes dynamics (i.e. variation in note velocity) into ac-
count. All models handle monorhythms but the four mod-
els based on hierarchical decomposition of rhythm patterns
are unable to handle polyrhythmic patterns. All models can
process both duple and triple meters with the exception of
KTH that can only process duple.

sum of the metrical weights for each note) and the maxi-
mum possible metrical simplicity for a rhythm containing
the same number of notes.

2.4.4 Sioros and Guedes 2011 (SG)

Sioros and Guedes [4, 17] also use metrical hierarchy to
determine syncopation. The main hypotheses are that hu-
mans try to minimise the syncopation of a particular note
relative to its neighbours in each level of the metrical hi-
erarchy, and that syncopations at the beat level are more
salient than those that occur in higher or lower metrical
levels.

The metrical weights for this model are wL = L i.e.
W = h0, 1, 2, ...i. The syncopation for a note is a function
of its velocity, its position in the hierarchy and the weights
of the previous and next notes in the rhythm sequence.

2.4.5 Keith 1991 (KTH)

Keith’s model [5] defines two types of syncopated events:
a hesitation, where a note ends off the beat (assigned a
value of 1) and anticipation, where a note begins off the
beat (assigned a value of 2). Where a note exhibits both
a hesitation and an anticipation, a syncopation is said to
occur and the respective values are summed to give a total
of 3. The start and end time are considered off-beat if they
are not divisible by the nearest power of two less than the
note duration.

2.4.6 Toussaint 2005 ‘Off-Beatness’ (TOB)

The off-beatness measure [6] is a geometric model that
treats the time-span of a rhythm sequence as a T -unit cy-
cle. The hypothesis, as applied to syncopation, is that syn-
copated events are those that occur in ‘off-beat’ positions
in the cycle; the definition of off-beatness in this case be-
ing any position that does not fall on a regular subdivision
of the cycle length T , thus the model is unable to measure
cycles where T is 1 or prime.



Figure 4. Module hierarchy in the SynPy toolkit: the
top-level module provides a simple interface for the user
to test different syncopation models. Musical constructs
such as bars, velocity and note sequences, notes, and time-
signatures are defined in the ‘music objects’ module; sup-
port for common procedures such as sequence concatena-
tion and subdivision is provided in ‘basic functions’. Mod-
els and file reading components can be chosen as required
by the user.

2.4.7 Gómez 2005 ‘Weighted Note-to-Beat Distance’
(WNBD)

The WNBD model of Gómez et al. [7] defines note events
that start in between beats in the notated meter to be ‘off-
beat’ thus leading to syncopation. The syncopation value
for a note is inversely related to its distance from the near-
est beat and is assigned more weight if the note crosses
over the following beat.

3. FRAMEWORK

The architecture of the toolkit is shown in Figure 4. Syn-
copation values can be calculated for each bar in a given
source of rhythm data along with selected statistics over
all bars; the user specifies which model to use and sup-
plies any special parameters that are required. Sources of
rhythm data can be a bar object or a list of bars (detailed
below in Section 3.1) or, alternatively, the name of a file
containing music data. Where a model is unable to calcu-
late a value for a given rhythm pattern, a ‘None’ value is
recorded for that bar and the indices of unmeasured bars
reported in the output. If no user parameters are supplied,
the default parameters specified in the literature for each
model are used. Output can optionally be saved directly to
XML or JSON files. An example of usage in the Python
interpreter is shown in Figure 5.

3.1 Music objects

The ‘music objects’ module provides classes to represent
the musical constructs described in Section 2. A Bar ob-
ject holds the rhythm information for a single bar of mu-
sic along with its associated time-signature and optional
tempo and TPQ values (see Section 2.1). Bar objects may
be initialised with either a note sequence or velocity se-
quence and can be chained together in the form of a doubly-
linked BarList allowing syncopation models to access
next and previous bars where appropriate (several mod-
els [1, 2, 5, 7] require knowledge of the contents of previ-
ous and/or next bars in order to calculate the syncopation

>>>from synpy import

*

>>>import synpy.PRS as model

>>>calculate_syncopation(model, "clave.rhy",

outfile="clave.xml")

{’bars_with_valid_output’: [0, 1],

’mean_syncopation_per_bar’: 8.625,

’model_name’: ’PRS’,

’number_of_bars’: 2,

’number_of_bars_not_measured’: 0,

’source’: ’clave.rhy’,

’summed_syncopation’: 17.25,

’syncopation_by_bar’: [8.625, 8.625]}

Figure 5. To use the toolkit, the top level synpy mod-
ule is imported along with a model (in this example Press-
ing [2]). Calling calculate syncopation() then gives
the syncopation results as shown, also writing output to an
XML file. Output file names and extra parameters for a
model are added as optional arguments as required by the
user.

T{4/4} # time-signature

TPQ{4} # ticks per quarternote

# Bar 1

Y{(0,3,2),(3,1,1),(6,2,2),(10,2,1),(12,4,1)}

# Bar 2

V{1,0,0,0.5,0,0,1,0,0,0,0.5,0,0.5,0,0,0}

Figure 6. Example rhythm annotation file clave.rhy

containing two bars of the Son Clave rhythm as discussed
Section 2. The first bar is expressed as a note sequence
with resolution of four ticks per quarter-note; the second is
the same rhythm expressed as a velocity sequence.

of the current bar). The note sequence and velocity se-
quence classes are direct implementations of the sequences
described in Section 2.2. Common low-level procedures
such as sequence concatenation and subdivision are pro-
vided in ‘basic functions’.

3.2 File Input

Two file reader modules are currently provided: one for
for reading plain text rhythm annotation (.rhy) files and
one for reading standard MIDI files (.mid). These mod-
ules open their respective file types and return a BarList
object ready for processing.

Our .rhy annotation format is a light text syntax for de-
scribing rhythm patterns directly in terms of note and ve-
locity sequences (see Figure 6). The full syntax specifica-
tion is given in Backus Naur Form on the toolkit reposi-
tory [19].

The MIDI file reader can open type 0 and type 1 standard
MIDI files and select a given track to read rhythm from.
Notes with zero delta time between them (i.e. chords)
are treated as the same event for the purposes of creating
note sequences from the MIDI stream. Time-signature and
tempo events encoded in the MIDI stream are assumed to
correctly describe those parameters of the recorded music
so it is recommended that the user avoids incorrectly anno-
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Figure 7. Syncopation predictions of the seven models in the toolkit for the syncopation dataset from [15]. For each
model, the absolute range of prediction values is shown across all rhythm patterns in the dataset; ranges differing between
models due to their different mechanisms. Within each rhythm category, the rhythm patterns are arranged by tatum-rate
(i.e. quarter-note rate then eighth-note rate) then in alphabetical order (the data set naming convention uses letters a-l to
represent short rhythm components that make up longer patterns). Gaps in model output occur where a particular model is
unable to process the specific rhythm category i.e. LHL, PRS, TMC, SG cannot process polyrhythms and KTH can only
measure rhythms in duple meters.

tated or unquantised MIDI files.

3.3 Plugin architecture

The system architecture has been designed to allow new
models to be added easily. Models have a common inter-
face, exposing a single function that will return the synco-
pation value for a bar of music. Optional parameters may
be supplied as a Python dictionary if the user wishes to
specify settings different from the those given in the litera-
ture for a specific model.

4. SYNCOPATION DATASET

The major outcome of the SynPy toolkit is to provide pre-
diction of the level of syncopation of any rhythm pattern
that can be measured by a given model. As a demon-
stration, we apply all seven syncopation models on the
rhythms patterns used as stimuli for the syncopation per-
ceptual dataset from [15, 23]. This dataset includes 27
monorhythms in 4/4 meter, 36 monorhythms in 6/8 and 48
polyrhythms in 4/4; altogether forming a set of 111 rhythm
patterns.

Figure 7 plots the syncopation predictions of individual
models for each rhythm. It presents the different ranges of
prediction values for each model and shows their capabili-
ties in terms of rhythm categories (refer to Table 1).

5. CONCLUSION

In this paper we have described SynPy, an open-source
Python toolkit for calculating syncopation prediction val-
ues. We have introduced the theoretical concepts under-

pinning the toolkit and briefly reviewed the hypothesis and
mechanism of the seven implemented models. The archi-
tecture of the toolkit has been introduced in Section 3 and
an example of command line usage shown demonstrating
ease of use. We have presented the syncopation predictions
calculated by SynPy for the dataset from [15], providing an
overall visualisation of the prediction ranges and capabili-
ties of each individual model.

The SynPy toolkit possesses a number of merits, includ-
ing the ability to process arbitrary rhythm patterns, con-
venient input from different sources of music data includ-
ing standard MIDI files and text annotations, and output
to XML and JSON files for further data analysis. It will
be a valuable tool for many researchers in the computa-
tional music analysis community. It will be particularly
useful to those who study syncopation models because it
enables a level of comparison and testing for new models
that was hitherto unavailable. The plugin architecture of
the toolkit allows new models to be added easily in the fu-
ture and open-source hosting in a repository on the sound-
software.ac.uk servers ensures long term sustainability of
the project.
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