
BeagleRT
hardware

BeagleBone Black
1GHz ARM Cortex-A8

NEON vector floating point
PRU real-time microcontrollers

512MB RAM

Custom BeagleRT Cape
Stereo audio in + out

Stereo 1.1W speaker amps
8x 16-bit analog in + out

16x digital in/out

BeagleRT
software

Xenomai Linux kernel C++ programming API
Uses PRU for audio/sensors

Runs at higher priority
than kernel = no dropouts
Buffer sizes as small as 2

Debian distribution
Xenomai hard real-time  

extensions

BeagleRT
features

1ms round-trip audio latency without underruns
High sensor bandwidth: digital I/Os sampled at
44.1kHz; analog I/Os sampled at 22.05kHz
Jitter-free alignment between audio and sensors
Hard real-time audio+sensor performance, but full
Linux APIs still available
Programmable using C/C++ or Pd
Designed for musical instruments and live audio

Materials
what you need to get started...

• BeagleBone Black (BBB)
• BeagleRT Cape
• SD card with BeagleRT image  

(image can be downloaded from wiki at beaglert.cc)
• 3.5mm headphone jack adapter cable
• The D-Box already contains all of the above...
• Mini-USB cable (to attach BBB to computer)
• Also useful for hardware hacking: breadboard,

jumper wires, etc.

http://beaglert.cc

Step 1
install BBB drivers and BeagleRT software

BeagleBone Black drivers:
http://beagleboard.org

BeagleRT code:
http://beaglert.cc --> Repository

instructions:
http://beaglert.cc --> Wiki --> Getting Started

http://beagleboard.org
http://beaglert.cc
http://beaglert.cc

Step 2
build a project

1. Web interface: http://192.168.7.2:3000  
Edit and compile code on the board

2. Build scripts (within repository) 
Edit code on your computer; build on the board  
No special tools needed except a text editor

3. Eclipse and cross-compiler (http://eclipse.org) 
Edit and compile on your computer; copy to board

4. Heavy Pd-to-C compiler (https://enzienaudio.com) 
Make audio patches in Pd-vanilla, translate to C and
compile on board

http://192.168.7.2:3000
http://eclipse.org
https://enzienaudio.com

Audio In

Audio Out

(headphone)

Speakers

8-ch. 16-bit ADC 8-ch. 16-bit DAC

BeagleRT/D-Box Cape
I2C and GPIO

Network,
USB, etc.

Other OS
Processes
Other OS
Processes

BeagleRT software
• Hard real-time environment using Xenomai 

Linux kernel extensions

• Use BeagleBone Programmable Realtime Unit

(PRU) to write straight to hardware

• Sample all matrix ADCs and DACs at  
half audio rate (22.05kHz)

• Buffer sizes as small as 2 samples (90µs latency)

BeagleRT
Audio Task

BeagleRT
System Calls

Other OS
Processes

Linux
Kernel

(slow!)

PRU I2S Audio

SPI ADC/DAC

Network,
USB, etc.

API introduction
• In render.cpp....
• Three main functions:
• setup()  

runs once at the beginning, before audio starts 
gives channel and sample rate info

• render()  
called repeatedly by BeagleRT system ("callback") 
passes input and output buffers for audio and sensors

• cleanup()  
runs once at end  
release any resources you have used

Real-time audio
• Suppose we have code that runs offline
‣ (non-real time)

• Our goal is to re-implement it online (real time)
‣ Generate audio as we need it!
‣ Why couldn’t we just generate it all in advance, and then

play it when we need it?
• Digital audio is composed of samples
‣ 44100 samples per second in our example
‣ That means we need a new sample every 1/44100

seconds (about every 23µs)
‣ So option #1 is to run a short bit of code every sample

whenever we want to know what to play next
‣ What might be some drawbacks of this approach?

- Can we guarantee we’ll be ready for each new sample?

Block-based processing
• Option #2: Process in blocks of several samples
‣ Basic idea: generate enough samples to get through the

next few milliseconds
‣ Typical block sizes: 32 to 1024 samples

- Usually a power of 2 for reasons having to do with hardware
‣ While the audio hardware is busy playing one block, we

can start calculating the next one so it’s ready on time:

Block 0 Block 1 Block 2 Block 3 ...

Playing (audio hardware)

Calculating
(processor)

Block-based processing
• Option #2: Process in blocks of several samples
‣ Basic idea: generate enough samples to get through the

next few milliseconds
‣ Typical block sizes: 32 to 1024 samples

- Usually a power of 2 for reasons having to do with hardware
‣ While the audio hardware is busy playing one block, we

can start calculating the next one so it’s ready on time:

Block 0 Block 1 Block 2 Block 3 ...

Playing (audio hardware)

Calculating
(processor)

Block-based processing

• Advantages of blocks over individual samples
‣ We need to run our function less often
‣ We always generate one block ahead of what is actually

playing
‣ Suppose one block of samples lasts 5ms, and running

our code takes 1ms
‣ Now, we can tolerate a delay of up to 4ms if the OS is

busy with other tasks
‣ Larger block size = can tolerate more variation in timing

• What is the disadvantage?
‣ Latency (delay)

At any given time, we are reading from ADC,
processing a block, and writing to DAC

Buffering illustration
In

pu
t

O
ut

pu
t

H
(z

)

3. Next cycle, we send this
buffer to the output

1. First we fill up
a buffer of samples

2. We process this buffer
while the next one fills upTotal latency is 2x buffer length

API introduction

• Sensor ("matrix" = ADC+DAC) data is gathered
automatically alongside audio

• Audio runs at 44.1kHz; sensor data at 22.05kHz
• context holds buffers plus information on number of

frames and other info
• Your job as programmer: render one buffer of audio

and sensors and finish as soon as possible!
• API documentation: http://beaglert.cc

void render(BeagleRTContext *context, void *userData)

http://beaglert.cc

Interleaving
• Two ways for multichannel audio to be stored
‣ Way 1: Separate memory buffers per channel

- This is known as non-interleaved format
- Typically presented in C as a two-dimensional array: 
float **sampleBuffers

‣ Way 2: One memory buffer for all channels
- Alternating data between channels

- This is known as interleaved format
- Typically presented in C as a one-dimensional array: 
float *sampleBuffer

L L L L L L L L

R R R R R R R R

L L L LR R R R

• We accessed non-interleaved data like this:
‣ float in = sampleBuffers[channel][n];

• How do we do the same thing with interleaving?
‣ float in = sampleBuffers[***what goes here?***];

‣ What else do we need to know?
- Number of channels

‣ float in = sampleBuffers[numChannels*n + channel];

‣ Each sample advances numChannels in the buffer
‣ The offset tells us which channel we’re reading

Interleaving

L L L LR R R R

L L L L L L L L

1 3 12 4 2 3 4

1 ch:

2 ch:

4 ch:

