BeagleR |

hardware

BeagleBone Black

1GHz ARM Cortex-A8
NEON vector floating point

PRU real-time microcontrollers
512MB RAM

~ Al
i
i
x

<
=

ll:'

- _
e
e
Y
o
—
—
L™
o
-"'
-
!
i
1
'

Custom BeagleRT Cape

Stereo audio in + out
Stereo 1.1W speaker amps
8x 16-bit analog In + out
16x digital infout

BeagleR |

software

Xenomai

Xenomai Linux kernel

Debian distribution
Xenomal hard real-time
extensions

3
Secal Syster sl
eCAP x3
UART x5 cOMA SDa
P XC 8 channel %0 x3
SPx2 mers 120t SAR v
Fe x3 WDT GPI0
MCASP x2 RTC AG
{4 channei)
RPW
CAN 2 N ys tal
Vor. ZAand B eQEP Mor &
RCN
US8 2.0 HS e Memory interiace
i e wOOR(LPOOR), DO
EM). el DOR3, DDR3L
I F“.’;‘;F- ba; 20 400
Al R AND a

C++ programming API

Uses PRU for audio/sensors
Runs at higher priority
than kernel = no dropouts
Buffer sizes as small as 2

Beagler| @
features DA
1ms round-trip audio latency without underruns

High sensor bandwidth: digital I/Os sampled at
44.1kHz; analog 1/Os sampled at 22.05kHz

Jitter-free alignment between audio and sensors

Hard real-time audio+sensor performance, but full
Linux APls still available

Programmable using C/C++ or Pd

Designed tfor musical instruments and live audio

Materials

what you need to get started...

e BeagleBone Black (BBB)
- BeagleRT Cape

e SD card with BeagleRT image
(image can be downloaded from wiki at beaglert.cc)

» 3.50mm headphone jack adapter cable
e [he D-Box already contains all of the above...
e Mini-USB cable (to attach BBB to computer)

e Also useful for hardware hacking: breadboard,
jumper wires, etc.

http://beaglert.cc

Step 1

install BEB drivers and BeagleRT software

BeagleBone Black drivers:
http://beagleboard.org

BeagleRT code:
http://beaglert.cc --> Repository

instructions:
http:/beaglert.cc --> Wiki --> Getting Started

http://beagleboard.org
http://beaglert.cc
http://beaglert.cc

Step 2

build a project

1. Web interface: http://192.168.7.2:3000
Edit and compile code on the board

2. Build scripts (within repository)
Edit code on your computer, build on the board
No special tools needed except a text editor

3. Eclipse and cross-compiler (http://eclipse.orq)
Edit and compile on your computer; copy to board

4. Heavy Pd-to-C compiler (https://enzienaudio.com)
Make audio patches in Pd-vanilla, translate to C and
compile on board

http://192.168.7.2:3000
http://eclipse.org
https://enzienaudio.com

BeagleRT/D-Box Cape

I2C and GPIO

Dhutsa.

BZD

I.\..d] 4 u
a>

QNL.A!J‘Ud..

ovP L rosS
Y T —
_ ‘\3
2

re-
-

Audio In

Audio Out | } t.' R
(headphone)

:
—
ﬁ
;
¥
a
d

AN B

[

oo

e

r

S
o Yo

.L'r-‘

LINK-PP

'
S
vdl

<
&
Ed

d 87

LPJ0O11BBNL B
1314

-

.

1117111 el

A B
£

Speakers

o

s L\

3

............

IS

8-ch. 16-bit ADC 8-ch. 16-bit DAC

BeagleRT software é

» Hard real-time environment using Xenomali
Linux kernel extensions

» Use BeagleBone Programmable Realtime Unit
(PRU) to write straight to hardware

4 R
BeagleRT 125 A |
Audio Task [\ > Audio y,

[)

BeagleRT SPI ADC/DAC
System Calls L INuUX \ y

_ Kernel h
Other OS Network,
Processes ¢ . (slow!) USB, etc.
T)

- Sample all matrix ADCs and DACs at
half audio rate (22.05kHz)
» Buffer sizes as small as 2 samples (90pus latency)

AP| introaquction

In render.cpp....

Three main functions:

setup()

runs once at the beginning, before audio starts
gives channel and sample rate info

render ()

called repeatedly by BeagleRT system (‘callback’)
passes input and output buffers for audio and sensors
cleanup()

runs once at end

release any resources you have used

Real-time audio

® Suppose we have code that runs offline
» (non-real time)

e Our goal is to re-implement it online (real time)
» Generate audio as we need |t!
» Why couldn’t we just generate it all in advance, and then
play it when we need it?
¢ Digital audio is composed of samples
» 44100 samples per second in our example

» That means we need a new sample every 1/44100
seconds (about every 23us)

» S0 option #1 is to run a short bit of code every sample
whenever we want to know what to play next

» What might be some drawbacks of this approach’?
- Can we guarantee we’'ll be ready for each new samp*éﬂ Queen l\/lary

rsity of London

Block-based processing

e Option #2: Process in blocks of several samples

» Basic idea: generate enough samples to get through the
next few milliseconds

» Typical block sizes: 32 to 1024 samples

- Usually a power of 2 for reasons having to do with hardware

» While the audio hardware is busy playing one block, we
can start calculating the next one so it's ready on time:

Playing (audio hardware)

4

Block O Block 1 Block 2 Block 3

t

Calculating
(processor)

L(JJ Queen Mary

Universit y of London

Block-based processing

e Option #2: Process in blocks of several samples

» Basic idea: generate enough samples to get through the
next few milliseconds

» Typical block sizes: 32 to 1024 samples

- Usually a power of 2 for reasons having to do with hardware

» While the audio hardware is busy playing one block, we
can start calculating the next one so it's ready on time:

Playing (audio hardware)

4

Block O Block 1 Block 2 Block 3

1

Calculating

(processor) ,
L(JJ Queen Mary

Universit y of London

Block-based processing

e Advantages of blocks over individual samples
» We need to run our function less often
» We always generate one block ahead of what is actually
playing
» Suppose one block of samples lasts d5ms, and running
our code takes 1ms

» Now, we can tolerate a delay of up to 4ms if the OS is
busy with other tasks

» Larger block size = can tolerate more variation in timing
¢ \What is the disadvantage?
» Latency (delay)

L(Q,J Queen l\/lary

sity of London

Buffering illustration

i
i

Output «— H(z) «<— Input

\W
-1)))

1 FEirst we fI'A\t any given time, we are reading from ADC,

2s m@elssmmm twegend thls
a buffer of samplersoCe Wep

TotaYva Ieentcbye |Q l(r))trjiﬁvlefﬁ%rli%) fﬁe output

AP| introaquction

volid render (BeagleRTContext *context, void *userData)

» Sensor (‘matrix" = ADC+DAC) data is gathered
automatically alongside audio

e Audio runs at 44.1kHz; sensor data at 22.05kHz

 context holds bufters plus information on number of
frames and other info

e Your job as programmer: render one bufter of audio
and sensors and finish as soon as possible!

* AP| documentation: http://beaglert.cc

http://beaglert.cc

Interleaving

e Two ways for multichannel audio to be stored
» Way 1. Separate memory buffers per channel

L L L L L L L L

R R R R R R R R

- This is known as non-interleaved format

- Typically presented in C as a two-dimensional array:
float **sampleBuffers

» Way 2: One memory buffer for all channels
- Alternating data between channels

L R L R L R L R

- This is known as interleaved format

- Typically presented in C as a one-dimensional array:
float *sampleBuffer

Interleaving

e \Ve accessed non-interleaved data like this:

» float 1n = sampleBuffers[channel] [n];
e How do we do the same thing with interleaving?
» float 1n = sampleBuffers[***what goes here?***];

» What else do we need to know?
- Number of channels

1 ch: L L L L L L L L

2 ch: L R L R L R L R

4 ch: 1 2 3 4 1 2 3 4

» float 1n = sampleBuffers[numChannels*n + channel];

» Each sample advances numChannels in the buffer
» The offset tells us which channel we're reading

