
Unit testing: what's it for?

An automated way of ensuring:

•  That your code's API works (i.e. that others can use it)
•  That the individual parts of your code work correctly
•  That you don't break your code when changing it

Also useful when developing a tricky algorithm (using test-first, or

test-driven development)

Version control: what's it for?

Software to help keep track of changes made to files

Tracks the history of your work:
•  How do you get back the working version you had last week?
•  Can you reproduce the results from last year's journal paper?
Helps you collaborate with others:
•  Check you all have the same version of the same code
•  Share and merge your changes

Popular examples include git, Mercurial, Subversion

An awkward question

“How do I know your results come from the method you’re
describing, and not from bugs in your software?”

Validation and verification

Validation: Establishing how well your model represents reality
•  Research papers are expected to do this

Validation and verification

Validation: Establishing how well your model represents reality
•  Research papers are expected to do this

Verification: Establishing that you have implemented your model
•  This is what formal software testing is about
•  It's also what most informal good practice aims at
•  Research papers seldom attempt any of this

“Feedback cycles”

Write code → learn how code is wrong → change or fix code

•  Software development “best practice” is often about trying to

shorten or simplify this cycle
•  Learn about your mistakes as early as possible

What we’re about to do

Simple audio analysis using a test-driven development process
Software used:
•  Python 2 (version 2.6 or 2.7, not Python 3)
•  NumPy – Python numerical modules
•  Nose – Python unit-test framework
•  EasyMercurial – Version control user interface
Optionally:
•  IPython – improved interactive console for Python
•  Matplotlib – plotting modules

