soundsoftware.ac.uk

Pointers to more effective
software & data in audio research

Mark D Plumbley, Chris Cannam, Steve Welburn
Centre for Digital Music

Queen Mary, University of London

om
iz|m
23
as

"
2|

Research software: The Question

“How do you know your code implements your
method at all?”

soundsoftware.ac.uk

om
@@
25
o2
S8

|0
2|

om
@@
25
o2
S8

Validation and verification

Validation: Establishing how well your model represents reality

* Research papers are expected to do this

soundsoftware.ac.uk

|0
2|

Validation and verification

Validation: Establishing how well your model represents reality

* Research papers are expected to do this

Verification: Establishing that you have implemented your model
* This is what formal software testing i1s about
* It's also what most informal good practice aims at

* Research papers seldom attempt any of this

soundsoftware.ac.uk

b
"
SR

A

om
£2|m
23
as

“Feedback cycles”

Write code — learn how code is wrong — fix code

* Software development “best practice” is often about trying to
shorten or simplify this cycle

* Learn about your mistakes as early as possible

soundsoftware.ac.uk

-
2|

[1 Me and
my software

worsoundsoftware.ac.uk

o
Manual test runs, and %{i
inspecting the results R

1 Me and
my software

EPSRC soundsoftware.ac.uk

Publication, o
peer review, or % jt

user feedback

Manual test runs, and
inspecting the results

—‘ Me and
my software

&

soundsoftware.ac.uk

Publication, o
peer review, or % k

user feedback
Manual test runs, and
Inspecting the results
o™
< Code reviews ﬁ@&
g Me and

my software

7
s

soundsoftware.ac.uk

Publication, o
peer review, or % k

user feedback

Manual test runs, and
Inspecting the results

o1
Code reviews ﬁ@&
< Unit testing E'_‘_’__‘“
E Me and

my software

7
s

soundsoftware.ac.uk

Publication, o
peer review, or % k

user feedback
Manual test runs, and
Inspecting the results
Code reviews
U
% E Me and

Continuous integration, o
scripted batch tests

o™
£=R

o
nit testing 2

O__—-—

Pair programming
Comepiler errors,
feedback from IDE or
Interactive environmen

my software

54

4

)

soundsoftware.ac.uk

A philosophical point

Much of this involves becoming more comfortable with the idea
that someone else will be looking at your code.

(We collaborate on papers; why not so much on code?)

Coding with readers in mind makes some things easier:

* Easier to write comments you'll understand later

* Easler to write testable code, and to do unit tests for it
* FEasier to do code reviews

* Easier to contemplate publishing 1t!

PSRC soundsoftware.ac.uk

om
£2|m
e3
as

“Code reviews”

Simply: getting someone else to read your code!

Can be informal, in a peer setting
* use-case reviewing: following the flow from known inputs
Or a bit more formal

* checklist reviewing: looking for likely troublespots

Can move from one to the other through simple application of
experience!

soundsoftware.ac.uk

|9
:;yw
g

Readable code is reviewable code

How to make code easier to read?
* Sensible variable names: distinctive, meaningful, not too long
* Slice code up into small functions: one function one purpose

* Plan functions by thinking about inputs and outputs first
(the API), rather than how they’ll work internally

* Write comments that explain the why, not the how
* But: “Don’t comment it, fix it”

* Can you read your code aloud?

soundsoftware.ac.uk

iz|m
T
:;yw

(@)

Code reviews? No problem

8=

Checklist

Systematic

Average number of defects found

Use-Case

. , , Dunsmore, Roper, Wood, 2000.
Tme (1n minutes) From Best-Kept Secrets of
Peer Code Review, Cohen, 2006

PSRC soundsoftware.ac.uk

Unit testing: what is it?

A unit test 1s a bit of code that calls one of your functions, gives it
some Input, and tells you whether it returned the right result

Write a set of these, and you have a test suite

A test framework can help you write them more quickly; there's at
least one for every programming language and environment

Should be set up so you can run all tests in one go, quickly

soundsoftware.ac.uk

iz|m
T
:;yw

(@)

Unit testing: what's it for?
An automated way of ensuring:

* That your code's APl works (i.e. that others can use it)

* That the individual parts of your code work correctly

* That you don't break your code when changing it

Also useful when developing a tricky algorithm (using test-first, or
test-driven development)

soundsoftware.ac.uk

iz|m
T
:;yw

(@)

om
@@
25
o2
S8

Unit testing questions

“How do | write tests when | don't know what results to expect?”

soundsoftware.ac.uk

|0
2|

Unit testing questions
“How do | write tests when | don't know what results to expect?”

* Break it down into functions whose behaviour you can predict
* TJest individual components, not the whole thing

 Testable code is also more readable code (and so more
reviewable code, and...)

Unit testing 1s about trying to ensure that the code implements the
method—not that the method is the right one

soundsoftware.ac.uk

b
"
SR

A

Unit testing questions

“How do | write tests when | don’t know what results to expect?”

“...If we've learned anything from the agile movement in the last
I5 years, it’s that the more improvisatory your development
process is, the more important careful craftsmanship is as
well—unless, of course, you don't care whether your programs
are producing correct answers or not.”

http://software-carpentry.org/2012/09/not-really-disjoint/

soundsoftware.ac.uk

b
"
SR

A

om
£2|m
23
as

Unit testing questions

“What sort of test data and test cases should | write?”
* The simplest possible ones!

* Include a “null” input test (e.g. silent signal)
“But | have big data sets and complex results!”

e Don't use real-world data: that's a different kind of test

* Look for the smallest possible input to test a given behaviour

soundsoftware.ac.uk

-
2|

om
iz|m
23
as

An example

Audio-to-note system for solo vocal music recordings:
http://code.soundsoftware.ac.uk/projects/cepstral-pitchtracker

* Short-time Fourier transform using FFT library
* Transform to cepstral domain
* Peak finder and interpolator

* Multi-agent method for identifying candidate notes

soundsoftware.ac.uk

"
2|

om
£2|m
23
as

An example

We don’t know what output we expect for real-world data,
but each of its components can be tested

* Short-time Fourier transform using FFT library v
* Transform to cepstral domain v
* Peak finder and interpolator v

* Multi-agent method for identifying candidate notes v

soundsoftware.ac.uk

-
2|

Version control

Software to help keep track of changes made to files

* Tracks the history of your work

* Helps you collaborate with others

Popular examples include git, Mercurial, Subversion

soundsoftware.ac.uk

Keeping track of history

* How do you get back to that working version you had
yesterday?

* How do you get from “it’s not working!” to understanding what
went wrong?

* How would you repeat the experiments from that journal
paper you wrote last year?

soundsoftware.ac.uk

Collaborating... with yourself!

You need to run the same software on your laptop at home and
the server in the lab:

* How do you get the code onto both?

* How do you verify that you have the same code on both?

soundsoftware.ac.uk

Collaborating with others

You're working on code or a paper with a colleague...
* How do you find out when they change something?
* How do you merge your changes without getting in a mess?

* How can you find out which of you introduced a bug, and
when?

soundsoftware.ac.uk

Version control helps with all this

A version control system
* Records your files history for you
 Shows differences between different versions

* Handles sync between copies on different computers

But you do have to work a bit:
* Tell it which files are part of your project
* Tell it when you've changed something

* If two people make conflicting changes, one of them must
resolve them

soundsoftware.ac.uk

Version control systems

Subversion: Centralised
* one server, one repository database

* every commit goes straight to the shared repository

Mercurial, git: Distributed
* every working copy has complete repository in it
* commits are local, then push/pull between computers

* e.g. work locally, then push to a remote hosting site

soundsoftware.ac.uk

Version control hosting sites

General-purpose :

* GitHub: very popular for sharing Git repositories

* BitBucket: Git and Mercurial, good private repo support

* SourcefForge: the old-school option for open source projects
Thematic:

e code.soundsoftware.ac.uk: for the UK audio and music
research community

Very specific:

* Does your department provide hosting?

soundsoftware.ac.uk

How is that different from Dropbox?

Consistency guarantees:

* Software needs to be exactly as written across all files

* Files changed together must be updated together

* Changes to a file by different people must be merged correctly
Record keeping:

* Publish and replicate history reliably

* Interrogate past changes and find out what version you are
ooking at

soundsoftware.ac.uk

Typical version control questions

* When should | start using version control for my project?
* Which files should | track in the repository?
* How often should | commit?

* How often should | push changes to a shared repo?

soundsoftware.ac.uk

Five things to do tomorrow

* (et your current research code into a version control repository,
push to a hosting site (a private project is fine)

* Pull it onto another computer, get it to build and run

* Talk to another researcher in your group, allot an hour to
experiment with reviewing a bit of each other’s code

* Identity a piece of your code that you can isolate and test

* Pick a licence for your code, check compatibility with other code
you're using, add It to code files

soundsoftware.ac.uk

b
"
SR

A

