
A practical point 

All this is much simpler if you write code with the expectation that 
someone else will read it 

(We collaborate on papers; why not so much on code?) 
 

Coding with readers in mind makes some things easier: 
•  Easier to write comments you'll understand later 
•  Easier to write testable code, and to do unit tests for it 
•  Easier to do code reviews 
•  Easier to contemplate publishing it! 



Unit testing questions 

“How do I write tests when I don't know what results to expect?” 
 
•  Break it down into functions whose behaviour you can predict 
•  Test individual components, not the whole thing 
•  Testable code is also more readable code (and so more 

reviewable code, and…) 

Unit testing is about trying to ensure that the code implements the 
method—not that the method is the right one 



Unit testing questions 

“What sort of test data and test cases should I write?” 
•  The simplest possible ones! 
•  Include a “null” input test (e.g. silent signal) 
 
“But I have big data sets and complex results!” 
•  Don't use real-world data: that's a different kind of test 
•  Look for the smallest possible input to test a given behaviour 
 



Version control systems 

Git, Mercurial: Distributed 
•  every working copy has complete repository in it 
•  commits are local, then push/pull between computers 
•  e.g. work locally, then push to a remote hosting site 
 
Subversion: Centralised 
•  one server, one repository database 
•  every commit gœs straight to the shared repository 
 
 



Version control hosting sites 

General-purpose : 
•  GitHub: very popular for sharing Git repositories 
•  BitBucket: Git and Mercurial, good private repo support 
•  SourceForge: the old-school option for open source projects 
Thematic: 
•  code.soundsoftware.ac.uk: for the UK audio and music 

research community 
Very specific: 
•  Dœs your department provide hosting? 
 



Day-to-day version control 

•  When should I start using version control for my project? 
•  Which files should I track in the repository? 
•  How often should I commit? 
•  How often should I push changes to a shared repo? 



Publishing code 

Make sure it has a licence!  
We suggest one of the common open-source licences: 
•  BSD/MIT-style for most research code 
•  Consider GPL for complete applications or code with possible 

commercial value 
Ensure licence is at least described in a README file 
See our site for more about licences… 
Give it a stable home! 
•  e.g. a recognised code-hosting facility (like ours ?!) 
•  Tell users what they should cite if they use it 


