
This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 License
© 2012 Queen Mary University of London

Publishing your research code

Before publishing your research code: a quick checklist

✓ Create a file called readme.txt in your project's root directory; put into it:
✓ the name of the software; 
✓ the names of all copyright holders; 
✓ a means to contact you; 
✓ any publication references for work associated with it; 
✓ basic instructions for how to build or install the software

✓ Pick a licence for your software, and ensure it is clearly shown in the readme.txt;
✓ Review all the libraries you are using to make sure their licences are compatible with yours, 

and make sure anyone who gets your code can see what licences (besides your own) they 
may have to comply with;

✓ Tag the version you want to release in version control;
✓ Package your release from version control, either by using the version control system to 

extract a clean copy (e.g. hg archive, svn export) or by cloning a fresh copy and archiving it 
without the version control repository subdirectory;

✓ Check the package: make sure it unpacks into a new directory named after the name and 
version of the software, make sure you can build it, and make sure it dœsn't include any 
extraneous build outputs or test files.

Much research in audio and music informatics involves the development of new computational 
methods implemented in software and the evaluation of new methods against earlier work also 
implemented in software. Publishing your research software—including the source code—is 
increasingly seen as good practice but not enough researchers get around to it. 

Why should I publish my code?

Make it easier to build upon your work—thus increasing citations and research impact
Increase trust in your results—improving your academic reputation
Ensure your work remains available—contributing to your own future career
Help support the research community—providing visible results to funding bodies and public

To promote software reuse outside of the immediate signal processing community you should consider 
adopting a “plugin” approach. Writing a plugin (eg. VST, VAMP) allows a working algorithm to be 
converted directly to a unit of code which can be used in real applications, without the need to develop a 
custom user interface. Developing to a published specification supported by more than one host program 
increases the relevance of the code and therefore the likelihood of its being maintained. Code that uses 
the plugin format of a successful application is relatively likely to be understood by other developers.

The software lifecycle dœs not end with publication: software that is to be used needs maintenance. The 
best way to ensure that your software is running is to have other users testing it and contributing to it.

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

